tspy.ml.clustering.kshape module¶
-
tspy.ml.clustering.kshape.
fit
(multi_time_series, k_clusters, num_runs, use_eigen=True, init_strategy='plusplus')¶ create a time-series-clustering model using the kshape clustering implementation.
- Parameters
- multi_time_series
MultiTimeSeries
the input multi-time-series
- k_clustersint or list
if a single int is given, will create a clustering model with the given number of cluster. If a list is given, k-shape will be performed for each k-cluster value between the first number given and the second number given, the output will be the best model based on the min sum of square distances for all centroids
- num_runsint
number of runs for clustering
- use_eigenbool, optional
if True, uses Eigen-Decomposition for shape extraction, otherwise uses simple averaging (default is True)
- init_strategystr, optional
the initialization strategy for the seed centroids in the model. Can be one of “random”, “zero”, “plusplus” (default is “plusplus”)
- multi_time_series
- Returns
TimeSeriesClusteringModel
a new time-series-clustering-model