tspy.functions.interpolators module¶
main entry point for time-series interpolators
-
tspy.functions.interpolators.cubic(fill_value=None, history_size=1, future_size=1)¶ fill null value with the value derived using cubic interpolation (using a few values in the left and a few values in the right)
-
tspy.functions.interpolators.fill(value)¶ fill null value with the given value
-
tspy.functions.interpolators.linear(fill_value=None, history_size=1, future_size=1)¶ fill null value with the value derived using linear interpolation (using a few values in the left and a few values in the right)
-
tspy.functions.interpolators.nearest(default_value=None)¶ fill null value with the nearest value, and if there is none, get default_value
-
tspy.functions.interpolators.next(default_value=None)¶ fill null value with the next value, and if there is none, get default_value
-
tspy.functions.interpolators.nullify()¶ set the given data to null value
-
tspy.functions.interpolators.prev(default_value=None)¶ fill null value with the previous value, and if there is none, get default_value