tspy.forecasters module¶
main entry-point for creation of ForecastingModel
-
tspy.forecasters.
anomaly_detector
(confidence)¶ Build a AnomalyDetector model
- Parameters
- confidence: float
- Returns
-
tspy.forecasters.
arima
(error_horizon_length=1, use_full_error_history=True, force_model=False, min_training_data=- 1, p_min=0, p_max=- 1, d=- 1, q_min=0, q_max=- 1)¶ Build a ARIMA model
- Parameters
- error_horizon_length: int, optional (1)
- use_full_error_history: bool, optional (True)
- force_model: bool, optional (False)
- min_training_data: int, optional (1)
- p_min: int, optional (0)
- p_max: int, optional (-1)
- d: int, optional (-1)
- q_min: int, optional (0)
- q_max: int, optional (-1)
- Returns
-
tspy.forecasters.
arma
(min_training_data=- 1, p_min=0, p_max=5, q_min=0, q_max=5)¶ Build a ARMA model
- Parameters
- min_training_data: int, optional (1)
- p_min: int, optional (0)
- p_max: int, optional (5)
- q_min: int, optional (0)
- q_max: int, optional (5)
- Returns
-
tspy.forecasters.
auto
(min_training_data, error_history_length=1)¶ Build a AUTO model
- Parameters
- min_training_data: int
- error_history_length: int, optional (1)
- Returns
-
tspy.forecasters.
bats
(training_sample_size, box_cox_transform=False)¶ Build a BATS model
- Parameters
- training_sample_size: int
- box_cox_transform: bool, optional
- Returns
-
tspy.forecasters.
hws
(**kwargs)¶ Build a Holt-Winters model
- Parameters
- sample_per_season: int
- initial_training_season:
- Returns
-
tspy.forecasters.
load
(path)¶
-
tspy.forecasters.
season_selector
(sub_season_percent_delta=0.0, max_season_length=None)¶ Build a SeasonSelector model
- Parameters
- sub_season_percent_delta: float, optional (0.0)
- max_season_length: int, optional (None)
- Returns