tspy.data_structures.ml.data_preparation.FeatureVectors module¶
-
tspy.data_structures.ml.data_preparation.FeatureVectors.
prepare
(data_time_series, label_time_series, anchor, left_delta, right_delta, pos_perc=1.0, neg_perc=0.05, label_range=None, feature_range=None, with_replacement=False, flatten_vector=False)¶ Prepare feature vectors for training using traditional shallow models or deep learning models
- Parameters
- data_time_series
MultiTimeSeries
multi-time-series containing the data vectors
- label_time_series
MultiTimeSeries
multi-time-series containing the labels
- anchorfunc or time-series boolean expression
function or expression to denote a negative from positive label
- left_deltaint
left delta time ticks to the left of the anchor point
- right_deltaint
right delta time ticks to the right of the anchor point
- pos_percfloat, optional
positive float between 0 and 1 representing the percentage of positive segments to take (default is 1.0)
- neg_percfloat, optional
positive float between 0 and 1 representing the percentage of positive segments to take (default is 1.0)
- label_rangetuple, optional
a tuple of the (offset_to_start, offset_to_end) for label. The offset will start from start of the segment (default is simple binary label)
- feature_rangetuple, optional
a tuple of the (offset_to_start, offset_to_end) for feature. The offset will start from start of the segment (default is entire segment of vectors)
- with_replacementbool, optional
if true, will allow for segments to overlap (default is false)
- flatten_vectorbool, optional
if true, will flatten each feature vector and label (if label is a vector) each to a single vector (default is false)
- data_time_series
- Returns
- list
a list of tuples, where each tuple contains the time-series key (str) - the key to the time-series for which the feature was found, label (int or nparray) binary value if no label-range given, otherwise an nparray representing the label vector, feature (nparray) an array representing the feature vector
-
tspy.data_structures.ml.data_preparation.FeatureVectors.
prepare_predictions
(data_time_series, left_delta, right_delta, label_range, feature_range=None, label_time_series=None, anchor=None, flatten_vector=False)¶