tspy.data_structures.context module¶
-
class
tspy.data_structures.context.
TSContext
(gateway=None, jvm=None, always_on_caching=True, kill_gateway_on_exception=False, port=0, callback_server_port=0, daemonize=False)¶ Bases:
object
Manage TimeSeriesContext object - to communicate with Spark engine
- Attributes
- distance_reducers
- duplicate_transforms
- exp
- forecasters
- general_reducers
- interpolators
- jvm
- math_reducers
- math_transforms
- ml
- multi_time_series
- observations
- segment_transforms
- stat_reducers
- stat_transforms
- stream_multi_time_series
- stream_time_series
- time_series
Methods
segment
(observations[, start, end])NOTE: Use at own risk, this is mostly for use of development inside library :param observations: :param start: :param end: :return:
anomaly_detector
day
hour
minute
observation
record
second
stop
-
anomaly_detector
(confidence)¶
-
day
(duration, unit='s')¶
-
property
distance_reducers
¶
-
property
duplicate_transforms
¶
-
property
exp
¶
-
property
forecasters
¶
-
property
general_reducers
¶
-
hour
(duration, unit='s')¶
-
property
interpolators
¶
-
property
jvm
¶
-
property
math_reducers
¶
-
property
math_transforms
¶
-
minute
(duration, unit='s')¶
-
property
ml
¶
-
property
multi_time_series
¶
-
observation
(timestamp=- 1, value=None)¶
-
property
observations
¶
-
record
(**kwargs)¶
-
second
(duration, unit='s')¶
-
segment
(observations, start=None, end=None)¶ NOTE: Use at own risk, this is mostly for use of development inside library :param observations: :param start: :param end: :return:
-
property
segment_transforms
¶
-
property
stat_reducers
¶
-
property
stat_transforms
¶
-
stop
()¶
-
property
stream_multi_time_series
¶
-
property
stream_time_series
¶
-
property
time_series
¶
-
tspy.data_structures.context.
get_or_create
()¶