tspy.data_structures.context module¶
-
class
tspy.data_structures.context.TSContext(gateway=None, jvm=None, always_on_caching=True, kill_gateway_on_exception=False, port=0, callback_server_port=0, daemonize=False)¶ Bases:
objectManage TimeSeriesContext object - to communicate with Spark engine
- Attributes
- distance_reducers
- duplicate_transforms
- exp
- forecasters
- general_reducers
- interpolators
- jvm
- math_reducers
- math_transforms
- ml
- multi_time_series
- observations
- segment_transforms
- stat_reducers
- stat_transforms
- stream_multi_time_series
- stream_time_series
- time_series
Methods
segment(observations[, start, end])NOTE: Use at own risk, this is mostly for use of development inside library :param observations: :param start: :param end: :return:
anomaly_detector
day
hour
minute
observation
record
second
stop
-
anomaly_detector(confidence)¶
-
day(duration, unit='s')¶
-
property
distance_reducers¶
-
property
duplicate_transforms¶
-
property
exp¶
-
property
forecasters¶
-
property
general_reducers¶
-
hour(duration, unit='s')¶
-
property
interpolators¶
-
property
jvm¶
-
property
math_reducers¶
-
property
math_transforms¶
-
minute(duration, unit='s')¶
-
property
ml¶
-
property
multi_time_series¶
-
observation(timestamp=- 1, value=None)¶
-
property
observations¶
-
record(**kwargs)¶
-
second(duration, unit='s')¶
-
segment(observations, start=None, end=None)¶ NOTE: Use at own risk, this is mostly for use of development inside library :param observations: :param start: :param end: :return:
-
property
segment_transforms¶
-
property
stat_reducers¶
-
property
stat_transforms¶
-
stop()¶
-
property
stream_multi_time_series¶
-
property
stream_time_series¶
-
property
time_series¶
-
tspy.data_structures.context.get_or_create()¶